Acids, Bases and Buffers (MCQ)

1. $20 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid is added to $10 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide. What is the pH of the resulting mixture?

A 1.00
B 1.18
C 1.30
D 1.48

Your answer
2. Phosphoric acid is a tribasic acid.

What is the mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ that completely neutralises $100 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ phosphoric acid?

A $\quad 0.49 \mathrm{~g}$
B $\quad 0.74 \mathrm{~g}$
C $\quad 1.11 \mathrm{~g}$
D $\quad 2.22 \mathrm{~g}$

Your answer
3. The equation shows the dissociation of the acid $\mathrm{H}_{3} \mathrm{AsO}_{4}$ in water.
$\mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{AsO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Which pair is a conjugate acid-base pair?

A $\mathrm{H}_{3} \mathrm{AsO}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$
B $\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$and $\mathrm{H}_{3} \mathrm{O}^{+}$
C $\mathrm{H}_{3} \mathrm{AsO}_{4}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$
D $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{O}$
4. A buffer solution is prepared by mixing $200 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ propanoic acid, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$, with $600 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium propanoate, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}$.
$K_{\text {a }}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}=1.32 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
What is the pH of the buffer solution?

A 4.58
B 4.70
C 5.06
D 5.18

Your answer \square
5. HA and HB are two strong monobasic acids.
$25.0 \mathrm{~cm}^{3}$ of $6.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{H A}$ is mixed with $45.0 \mathrm{~cm}^{3}$ of $3.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{H B}$.
What is the $\mathrm{H}^{+}(\mathrm{aq})$ concentration, in $\mathrm{mol}_{\mathrm{dm}}{ }^{-3}$, in the resulting solution?

A 1.9
B 2.1
C 4.1
D 4.5

Your answer \square
6. A $0.040 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of a weak monobasic acid is 1.0% dissociated. What is the value of K_{a} for the acid?

A	$2.0 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$
B	$4.0 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$
C	$4.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
D	$4.0 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$

Your answer \qquad
7. Which statement is correct for a neutral solution at any temperature?
A. $K_{w}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
B. The solution contains only $\mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
D. $\mathrm{pH}=7$

Your answer \square
8. A buffer solution is based on methanoic acid, $\mathrm{HCOOH}\left(K_{\mathrm{a}}=1.70 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and methanoate ions, HCOO^{-}.

In the buffer solution, the HCOOH concentration is half the HCOO^{-}concentration.
What is the pH of the buffer solution?
A. 2.47
B. 3.07
C. 3.47
D. 4.07

Your answer

9. A solution of propanoic acid, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$, has a pH of 2.89 at $25^{\circ} \mathrm{C}$.

What is $\left[\mathrm{H}^{+}\right]$in this solution?
A. $1.7 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$
B. $4.6 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
C. $1.3 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
D. $0.46 \mathrm{~mol} \mathrm{dm}^{-3}$

Your answer \square

Mark scheme - Acids, Bases and Buffers (MCQ)

Question	Answer/Indicative content	Marks	Guidance
1	D	$\begin{gathered} 1 \\ (\mathrm{AO} 2.2) \end{gathered}$	
	Total	1	
2	C	$\begin{gathered} 1 \\ (\mathrm{AO} 2.2) \end{gathered}$	
	Total	1	
3	D	$\begin{gathered} 1 \\ (\mathrm{AO} 1.2) \end{gathered}$	
	Total	1	
4	C	$\begin{gathered} 1 \text { (AO } \\ 2.6) \end{gathered}$	Examiner's Comments This relatively difficult pH calculation was readily done successfully by higher ability candidates, but lower ability candidates found it difficult, with answer B proving a popular choice.
	Total	1	
5	C	1	ALLOW 4.1 in the box
	Total	1	
6	B	1	
	Total	1	
7	C	1	
	Total	1	
8	D	1	
	Total	1	
9	C	1	
	Total	1	

